Numerical methods for palindromic eigenvalue problems: Computing the anti-triangular Schur form
نویسندگان
چکیده
We present structure-preserving numerical methods for the eigenvalue problem of complex palindromic pencils. Such problems arise in control theory, as well as from palindromic linearizations of higher degree palindromic matrix polynomials. A key ingredient of these methods is the development of an appropriate condensed form — the anti-triangular Schur form. Ill-conditioned problems with eigenvalues near the unit circle, in particular near ±1, are discussed. We show how a combination of unstructured methods followed by a structured refinement can be used to solve such problems accurately.
منابع مشابه
Perturbation of Palindromic Eigenvalue Problems
We investigate the perturbation of the palindromic eigenvalue problem for the matrix quadratic P (λ) ≡ λA1 + λA0 + A1, with A0, A1 ∈ Cn×n and A0 = A0. The perturbation of palindromic eigenvalues and eigenvectors, in terms of general matrix polynomials, palindromic linearizations, (semi-Schur) anti-triangular canonical forms, differentiation and Sun’s implicit function approach, are discussed.
متن کاملPerturbation Results Related to Palindromic Eigenvalue Problems
We investigate the perturbation of the palindromic eigenvalue problem for the matrix quadratic P(λ)= λ2 A?1 + λA0 + A1 with A0, A1 ∈ C n×n and A?0 = A0 (where ?= T or H ). The perturbation of eigenvalues in the context of general matrix polynomials, palindromic pencils, (semi-Schur) anti-triangular canonical forms and differentiation is discussed. 2000 Mathematics subject classification: primar...
متن کاملContributions to Parallel Algorithms for Sylvester-type Matrix Equations and Periodic Eigenvalue Reordering in Cyclic Matrix Products
This Licentiate Thesis contains contributions in two different subfields of Computing Science: parallel ScaLAPACK-style algorithms for Sylvester-type matrix equations and periodic eigenvalue reordering in a cyclic product of matrices. Sylvester-type matrix equations, like the continuous-time Sylvester equation AX −XB = C, where A of size m×m, B of size n×n and C of size m×n are general matrices...
متن کاملLocking and Restarting Quadratic Eigenvalue Solvers
This paper studies the solution of quadratic eigenvalue problems by the quadratic residual iteration method. The focus is on applications arising from nite-element simulations in acoustics. One approach is the shift-invert Arnoldi method applied to the linearized problem. When more than one eigenvalue is wanted, it is advisable to use locking or de-ation of converged eigenvectors (or Schur vect...
متن کاملAn Augmented Lagrangian Approach to Linearized Problems in Hydrodynamic Stability
The solution of linear systems arising from the linear stability analysis of solutions of the Navier–Stokes equations is considered. Due to indefiniteness of the submatrix corresponding to the velocities, these systems pose a serious challenge for iterative solution methods. In this paper, the augmented Lagrangian-based block triangular preconditioner introduced by the authors in [2] is extende...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Numerical Lin. Alg. with Applic.
دوره 16 شماره
صفحات -
تاریخ انتشار 2009